Batería

Partes, reacciones químicas y funcionamiento.

Sistema de Carga

Alternador,partes y funcionamiento.

Sistema de arranque

Finalidad del sistema,partes, funcionamiento y mantenimiento .

Sistemas de Encendido

Tipos y funcionamiento.

Sistema de iluminación y accesorios

Subsistemas y Diagramas .

jueves, 23 de octubre de 2014

Vídeo del Sistema Eléctrico del Automovil


SISTEMA DE CARGA


El alternador igual que la antigua dinamo, es un generador de corriente eléctrica que transforma la energía mecánica que recibe en su eje en energía eléctrica que sirve ademas de cargar la batería, para proporcionar corriente eléctrica a los distintos consumidores del vehículo como son el: el sistema de alimentación de combustible, el sistema de encendido, las luces, los limpias etc.


El alternador sustituyo a la dinamo debido a que esta ultima tenia unas limitaciones que se vieron agravadas a medida que se instalaban mas accesorios eléctricos en el automóvil y se utilizaba el automóvil para trayectos urbanos con las consecuencias sabidas (circulación lenta y frecuentes paradas). La dinamo presentaba problemas tanto en bajas como en altas revoluciones del motor; en bajas revoluciones necesita casi 1500 r.p.m. para empezar a generar energía, como consecuencia con el motor a ralentí no generaba corriente eléctrica; una solución era hacer girar a mas revoluciones mediante una transmisión con mayor multiplicación pero esto tiene el inconveniente de: que a altas revoluciones la dinamo tiene la limitación que le supone el uso de escobillas y colector.

Para elegir el alternador adecuado para cada vehículo hay que tener en cuenta una serie de factores como son:
  • La capacidad de la batería (amperios/hora).
  • Los consumidores eléctricos del vehículo
  • Las condiciones de circulación (carretera/ciudad, paradas frecuentes).


Los fabricantes de vehículos determinan el tamaño del alternador teniendo en cuenta los factores expuestos anteriormente y sabiendo que en cualquier situación el alternador debe suministrar suficiente energía eléctrica para alimentar a los consumidores y para cargar la batería, garantizando que el coche vuelva a arrancar la próxima vez que se le solicite sin problemas.


Si la demanda de energía es elevada. por ejemplo por haber incorporado en el vehículo diversos consumidores adicionales, puede resultar conveniente sustituir el alternador previsto de serie por otro de mayor potencia, sobre todo cuando el vehículo circula preferente en ciudad, con recorridos cortos y frecuentes paradas. En este caso, es conveniente verificar el consumo de todos los aparatos eléctricos instalados y sus tiempos medios de utilización, al tiempo que se valora el tipo de circulación del vehículo (carretera o ciudad). En general el balance energético del alternador se realiza sumando la potencia eléctrica de todos los consumidores para determinar posteriormente, con ayuda de unas tablas la intensidad nominal mínima necesaria. Como ejemplo diremos que se determina a través de esta tabla aproximadamente que la intensidad del alternador será una décima parte de la suma de potencias de todos los consumidores. Por eso tenemos, si en una determinada aplicación la suma de consumidores es igual a 500 W. la intensidad nominal del alternador necesario debe ser de 50 A.



Las características esenciales del alternador trifasicos son las siguientes:
  • Entrega de potencia incluso en ralentí.
  • Los diodos ademas de convertir la corriente alterna en corriente continua, evitan que la tensión de la batería se descargue a través del alternador cuando el motor esta parado o el alternador no genera corriente (avería).
  • Mayor aprovechamiento eléctrico (es decir, a igualdad de potencia, los alternadores son mas ligeros que las dinamos).
  • Larga duración (los alternadores de turismos presentan una vida útil a la del motor del vehículo; hasta 150.000 km, por lo que no requieren mantenimiento durante ese tiempo).
  • Los alternadores mas resistentes para vehículos industriales, se fabrican en versiones sin anillos colectores, bien sea con posibilidades relubricación o provistos de cojinetes con cámaras con reserva de grasa.
  • Son insensibles a influencias externas tales como altas temperaturas, humedad, suciedad u vibraciones.
  • Pueden funcionar en ambos sentidos de giro sin requerir medidas especiales, siempre que la forma del ventilador que lo refrigera, sea adecuado al sentido de giro correspondiente.

El alternador debido a su forma constructiva en el que las bobinas inducidas permanecen estáticas formando parte del estator, siendo el campo inductor el que se mueve con el rotor, alimentado con corriente continua procedente del mismo generador a través de dos anillos rozantes situados en el eje de rotor. Esta disposición de los elementos del alternador proporciona grandes ventajas tal como poder girar a grandes revoluciones sin deterioro de sus partes móviles, ademas de entregar un tercio de su potencia nominal con el motor girando al ralentí. y proporcionando su potencia nominal a un régimen de motor reducido; esto permite alimentar todos los servicios instalados en el vehículo, aun en condiciones adversas, quedando la batería como elemento reservado para la puesta en marcha del mismo, y encontrandose siempre con carga suficiente para una buena prestación de servicio. 

El rendimiento del alternador aumenta con la velocidad de giro del motor; por eso debe procurarse que la relación de desmultiplicación entre el cigüeñal del motor y el alternador sea lo mas alta posible. En el sector de turismos, los valores típicos están entre 1:2 y 1:3 (por cada vuelta del cigüeñal, da dos vueltas del alternador); en el sector de vehículos industriales llegan hasta 1:5.



Tipos de alternadores

Para la selección del alternador son determinantes, principalmente:

  • La tensión del alternador (14 V/28 V).
  • La entrega de potencia (V x I) posible en todo el margen de revoluciones.
  • La corriente máxima
De acuerdo con estos datos se determinan el dimensionado eléctrico y el tamaño requerido por el alternador.
El fabricante de alternadores BOSCH usa como distintivo de identificación de los tamaños constructivos de alternadores "las letras". El orden sucesivo alfabético indica el tamaño ascendente del alternador.
VersiónAplicaciónTiponº de polos
CompactoTurismos y motocicletasGC
KC
NC
12
MonoblocTurismos, vehículos industriales, tractores, motocicletasG1
Turismos, vehículos industriales, tractoresK1, N1
AutobusesT116
Vehículos industriales. Largos recorridos, maqu. de construcciónN312
EstándarVehículos especialesT314
Vehículos especiales, barcosU24, 6


Alternadores de polos intercalados con anillos colectores

A esta clasificación pertenecen la mayoría de los alternadores vistos en la tabla menos el monoblioc N3 y el Estándar U2. La construcción de estos alternadores (polos intercalados con anillos rozantes) hacen del mismo un conjunto compacto con características de potencias favorables y reducido peso. Su aplicación abarca una amplia gama de posibilidades. Estos alternadores son especialmente apropiados para turismos, vehículos industriales, tractores, etc. La versión T1 de mayor potencia esta destinada a vehículos con gran demanda de corriente (p. ejem. autobuses).


Características

La relación longitud/diámetro elegida permite conseguir máxima potencia con escasa demanda de material. De ello se deriva la forma achatada típica de este alternador, de gran diámetro y poca longitud. Esta forma permite ademas una buena disipación de calor. La denominación de "alternador de polos intercalados" proviene de la forma de los polos magnéticos. El árbol del rotor lleva las dos mitades de rueda polar con polaridad opuesta. Cada mitad va provista de polos en forma de garras engarzados entre si formando alternativamente los polos norte y sur. De ese modo recubren el devanado de excitación, en forma de bobina anular, dispuesto sobre el núcleo polar. El numero de polos realizable tiene un limite. Un numero de polos pequeño determinaría un rendimiento insuficiente de la maquina, mientras que un numero demasiado grande haría aumentar excesivamente las perdidas magnéticas por fugas, Por esta razón, estos alternadores se construyen, según el margen de potencia, con 12 ó 16 polos.


Alternadores compactos GC, KC, NC

Aplicación

Están destinados a turismos con gran demanda de potencia
Son especialmente apropiados para los modernos motores de vehículos con régimen de ralentí. reducido. La velocidad de giro máxima aumentada del altenador (20.000 r.p.m. durante breve tiempo) permite una mayor desmultiplicación, por lo que estos alternadores pueden entregar hasta un 25% mas de potencia con una misma velocidad de giro del motor que los alternadores del tipo monobloc.
Estructura 
Los alternadores compactos son alternadores trifasicos autoexcitados, de 12 polos, con rotor sincrono de garras polares, anillos colectores pequeños y diodos de potencia Zenner, con doble flujo de ventilación. En el estator se encuentra el devanado trifasico con 12 polos y en el rotor el sistema de excitación con el mismo numero de polos. Dos ventiladores interiores refrigeran el alternador desde las carcasas frontales. Esto reduce el ruido de la ventilación y permite una mayor libertad de elección del punto de montaje en el motor.
Los anillos colectores presentan un diámetro sensiblemente menor, con lo cual disminuye también la velocidad periférica de los mismos. Con ello disminuye el desgaste, tanto de la superficie de los anillos colectores como de las escobillas, gracias a lo cual la vida útil del alternador ya no esta determinada por el desgaste de estas . El regulador electrónico de tensión esta integrado en el portaescobillas.
Un revestimiento de plástico protege de la corrosión al rectificador, realizado en versión estratificada, con diodos Zenner. Los diodos Zenner ofrecen una protección adicional contra sobretensiones y picos de tensión.



Alternadores compactos de segunda generación (serie constructiva B)

La serie B de alternadores compactos para turismos y vehículos industriales es una versión perfeccionada del alternador compacto, con mayor vida útil, menores dimensiones, peso mas reducido y potencia inicial aumentada. La serie se compone de seis tamaños constructivos con 14 V de tensión nominal y tres tamaños con una tensión nominal de 28 V. El estrecho escalonamiento permite una optima adaptación a la demanda de potencia y al espacio disponible en el compartimento motor de los automóviles modernos.

Denominación
Tensión nominal
Corriente nominal (amperios) a:
1.800 r.p.m.
6.000 r.p.m.
GCB1
GCB2
KCB1
KCB2
NCB1
NCB2
14 V
22
37
50
60
70
80
55
70
90
105
120
150
KCB1
NCB1
NCB2
28 V
25
35
40
55
80
100

Estructura

La estructura fundamental de la serie constructiva B no se diferencia de la de un alternador compacto convencional. Una nueva ejecución del rectificador (puente de diodos) permite un mayor caudal de aire con lo que se mejora la refrigeración. Ademas estos alternadores están equipados con un regulador de tensión multifuncional que explicaremos mas adelante.



Alternadores monobloc G1, K1 y N1

Aplicación 
El extenso numero de modelos de alternadores trifasicos en versión monobloc, series constructivas G1, K1 y N1, permite utilizarlos en turismos y vehículos industriales, aunque los turismos se equipan cada vez mas con alternadores compactos.


Estructura

Los alternadores un versión monobloc tiene un funcionamiento igual al de los alternadores compactos. Los monobloc son alternadores trifasicos con un solo flujo de ventilación, autoexcitados, de 12 polos. En las chapas de refrigeración de la tapa de anillos colectores van montados a presión 6 diodos de potencia para la rectificación de la tensión del alternador. En la mayoría de las versiones, el regulador electrónico de tensión va montado formando una unidad con el portaescobillas, directamente en la cara frontal de la tapa de anillos colectores.

Para condiciones de utilización especiales, los alternadores K1 y N1 están provistos del siguiente equipamiento:
  • A través de un adaptador de conexión de tubos flexibles se aspira aire fresco por un manguito si la temperatura ambiente es muy elevada.
  • La velocidad máxima de giro puede aumentar hasta 18.000 r.p.m.
  • Para condiciones de montaje muy desfavorables existe una protección especial contra la corrosión.
  • Para la protección de componentes sensibles a los picos de tensión en caso de desconexión repentina de la carga y funcionamiento sin batería, se utilizan diodos de potencia Zenner para la rectificación


Alternadores monobloc (serie constructiva T1) 

Estos alternadores están previstos para vehículos con elevado consumo de corriente, sobre todo para autobuses. Los autobuses urbanos requieren una elevada entrega de potencia dentro de un margen amplio de revoluciones, que abarca también el ralentí. del motor. El funcionamiento es idéntico al de los alternadores de la versión monobloc de las series constructivas G1, K1, y N1.


Estructura 

Los alternadores T1 son alternadores trifasicos con un solo flujo de ventilación, autoexcitados y de 16 polos, con diodos rectificadores incorporados y anillos colectores encapsulados. En el estator va alojado el devanado trifasico, y en el rotor, el sistema de excitación.
Los alternadores T1 en versión de brazo giratorio, con brazo de fijación hacia la izquierda o a la derecha, para fijación elástica o rigida. Rodamientos especialmente anchos con grandes reservas de grasa, permiten largos tiempos de utilización y mantenimiento. Los alternadores están refrigerados por ventiladores independientes del sentido de giro y protegidos en invierno contra las salpicaduras de agua dulce y agua con sal mediante medidas anticorrosión especiales. En caso de funcionamiento en condiciones extremas (calor y polvo) puede aspirarse aire fresco, seco y exento de polvo, a través de un adaptador y un tubo flexible dispuesto con ese fin.
Dentro de los alternadores T1 tenemos una versión especial que es el DT1 se trata de un doble alternador que sirve para satisfacer las mayores demandas de potencia que se dan en los autobuses actuales. El DT1 se trata de un doble alternador que se compone de dos alternadores de la serie constructiva T1, acoplados eléctrica y mecánicamente en una carcasa común.
El regulador electrónico de tensión esta montado en el alternador. Las escobillas y los anillos colectores se encuentran dentro de una cámara de anillos colectores protegida contra el polvo. Una resistencia de 100 ohmios entre D+ y D-, hace que se encienda la lampara de control del alternador en caso de interrupción del campo.



Alternadores de polos individuales con anillos colectores (serie constructiva U2)

Se utilizan preferentemente para vehículos grandes con gran demanda de corriente (> 100 A) y tensiones de batería de 24 V. Son especialmente apropiados, por lo tanto, para autobuses, vehículos sobre railes, embarcaciones y grandes vehículos especiales. 
Se trata de un alternador de 4 polos autoexcitado. En cada vuelta del rotor tienen lugar cuatro pasos polares, induciendose cuatro semiondas por devanado. Es decir, para tres fases, 4 x 3 = 12 semiondas por vuelta.


Estructura

La disposición del devanado estatorico trifasico y la variación de corriente son idénticas a las del alternador de polos intercalados. Sin embargo, el rotor de este tipo básico del alternador difiere del sistema del rotor de garras polares.



El rotor de garras presenta un devanado de excitación central que actúa conjuntamente para todos los polos. El de polos individuales, por el contrario, lleva cuatro o seis polos individuales a los que esta aplicado directamente el devanado de excitación.

Cada uno de estos bobinados esta individualmente. La forma característica del rotor determina la forma cilíndrica alargada del alternador de polos individuales. En la carcasa cilíndrica del alternador esta dispuesto el estator con el devanado estatorico trifasico. La carcasa esta cerrada por una tapa de anillos colectores y una tapa de cojinete de accionamiento. El rotor de polos individuales alojado en el interior lleva el devanado de excitación. La corriente de excitación se conduce a través de los anillos colectores y las escobillas. El rectificador y el regulador son componentes externo que se montan separados del alternador en un lugar protegido contra el calor del motor, la humedad y la suciedad. La conexión entre el alternador y el regulador se realiza mediante el juego de cables de seis conductores. 
Gracias al encapsulamiento de los anillos colectores y a un rodamiento de bolas con cámara de grasa ampliada, este alternador es apropiado para funcionar largo tiempo ininterrumpidamente.



Alternadores con rotor-guia sin anillos colectores (serie constructiva N3)

Las únicas piezas sujetas a desgaste de estos alternadores son los rodamientos. Se utilizan en los transportes donde la larga duración sea un factor decisivo (maquinaria de construcción, camiones para largos recorridos y vehículos especiales para grandes esfuerzos. La importancia de los alternadores de rotor-guia estriba en que permiten recorrer distancias extremadamente grandes en condiciones difíciles. Su principio constructivo se basa en la idea de emplear en el alternador el menor numero de piezas posibles sometidas a desgaste, para conseguir así prolongados tiempos de servicio sin mantenimiento. Este alternador esta prácticamente exento de mantenimiento.

Funcionamiento y estructura
El alternador se autoexcita por medio del devanado de excitación fijo situado sobre el polo interior. Como la remanencia es lo suficientemente grande, no es necesaria la preexcitación del alternador. El campo de excitación magnetiza los dedos polares, dispuestos alternadamente, del rotor-guia giratorio. El campo magnético giratorio de estos polos induce a su vez una tensión alterna trifasica en el devanado estatorico. El flujo magnético discurre desde el núcleo polar del rotor giratorio a través del polo interior fijo hasta la pieza guía, y luego a través de sus polos hasta el paquete del estator fijo. A través de la mitad de las garras de polos intercalados, de polaridad opuesta se cierra el circuito magnético en el núcleo del polar del rotor. Al contrario que en el rotor de anillos colectores, el flujo magnético debe superar dos entrehierros adicionales entre la rueda polar giratoria y el polo interior fijo.
Normalmente, ademas de la carcasa con el paquete del estator, las chapas de refrigeración con los diodos de potencia y el regulador transistorizado de montaje adosado, pertenecen también a la parte fija de la maquina el polo interior con el devanado de excitación. La parte giratoria consta únicamente del rotor con la rueda polar y su pieza guía. Seis dedos polares de igual polaridad forman respectivamente una corona polar como polos norte y sur
Las dos coronas, como mitades por polos en forma de garras, se mantienen juntas mediante un anillo no magnético dispuesto bajo los polos, engarzados entre si.


Alternador compacto de refrigeración liquida

El ventilador necesario para la refrigeración es la causa determinante del ruido del flujo en los alternadores refrigerados por aire. Una reducción considerable del ruido con una entrega de corriente mayor solo puede lograrse con un alternador de refrigeración liquida, para cuya refrigeración se utiliza el liquido refrigerante del motor.
En los vehículos modernos de clase media y superior, la utilización de un alternador totalmente encapsulado y de refrigeración liquida es hasta ahora la única posibilidad de reducir la rumorosidad en el vehículo. La insonorización de la envoltura del liquido refrigerante actúa sobre todo a altas revoluciones, régimen en el que es especialmente acusado el ruido de flujo de los alternadores refrigerados por aire.
El calor disipado del alternador bajo la correspondiente carga del mismo (p. ejem. mediante resistencias calefactoras en la entrada de aire al habitáculo) favorece el calentamiento del agua refrigerante durante la fase de calentamiento, lo cual luego contribuye sobre todo en los modernos motores Diesel con grado de rendimiento optimizado, a reducir la fase de calentamiento del motor y el rápido calentamiento del habitáculo.


Estructura 

El alternador totalmente encapsulado esta ejecutado con un rotor-guia sin anillos colectores, porque en un sistema de escobillas y anillos colectores no ofrecería una vida útil suficiente debido a las altas temperaturas del interior.
El alternador esta fijado en una carcasa de inserción. La envoltura de liquido refrigerante entre la carcasa del alternador y la carcasa del alternador y la carcasa de inserción esta en comunicación con el circuito de refrigeración del motor. Todas las fuentes de perdidas esenciales (estator, semiconductor de potencia, regulador y devanado de excitación fijo) están acoplados a la carcasa del alternador de forma que pueda producirse una buena condición del calor. Las conexiones eléctricas se encuentran en el lado de accionamiento.

SISTEMA DE ARRANQUE

Arranque del Motor del Automóvil


El motor de combustión interna no tiene arranque propio, hay que hacerlo girar con una fuente externa para que se completen los procesos necesarios y se produzca el encendido. Existen varias formas de hacer girar el motor para que arranque:
  1. Arranque manual.
  2. Arranque por motor de aire comprimido.
  3. Arranque por motor de combustión auxiliar.
  4. Arranque por motor eléctrico.


Arranque por motor eléctrico

Para el arranque de los motores de automóvil se usa un motor eléctrico de corriente continua que se alimenta desde la batería de acumuladores a través de un relé. Este relé a su vez se acciona desde el interruptor de encendido del automóvil (figura 1).
Esquema del sistema de arranque del automóvil

Figura 1. Esquema del sistema de Arranque



Cuando se acciona el interruptor de arranque se alimenta con electricidad proveniente de la batería a la bobina del relé, y este a su vez cierra dos grandes contactos en su interior alimentando el motor de arranque directamente desde la batería a través de un grueso conductor (representado con color rojo).

El motor eléctrico

El motor de arranque es un motor de corriente directa tipo shunt especialmente diseñado para tener una gran fuerza de torque con un tamaño reducido, capaz de hacer girar el motor de combustión interna. Esta capacidad se logra a expensas de sobrecargar eléctricamente las partes constituyentes ya que el tiempo de funcionamiento es muy breve, por tal motivo no debe mantenerse en acción por largo tiempo, so pena de terminar averiado por sobrecalentamiento. El consumo de electricidad durante el arranque es elevado (hasta 1000 Amp para grandes motores de combustión), de manera tal que también la batería funciona en un régimen muy severo durante este proceso. Debido a estas razones es muy recomendable, cuando se intenta arrancar un motor "perezoso" usar varios intentos de corta duración (unos 10 segundos), en lugar de un solo intento de larga duración.

En la figura 2 puede diferenciarse el relé así como los grandes tornillos de conexión para los cables procedentes de la batería.

El mecanismo de accionamiento

La transmisión de la rotación desde el motor de arranque al motor de combustión se realiza a través de engranajes. Un pequeño engrane deslizante está acoplado al eje del motor de arranque, este engrane es desplazado sobre estrías por el relé a través de una horquilla pivotante, de manera que se acopla a un engrane mayor que rodea el volante del cigüeñal del motor haciéndolo girar.

Este  engrane funciona a través de un mecanismo de rueda libre (como el de las bicicletas) de manera que el torque del motor de arranque se trasmita al engrane del cigüeñal, pero una vez que el motor de combustión se ponga en marcha, no pueda arrastrar al motor de arranque.

Sin este mecanismo de rueda libre, debido a la gran velocidad del motor de combustión y a la elevada relación de transmisión entre el par engranado, la velocidad de rotación del rotor del motor eléctrico llegaría a velocidades peligrosas para su integridad, especialmente en conductores demorados en soltar la llave de encendido. 
Vista de un arranque típico
Figura 2. Vista de un arranque típico


Motor de arranque seccionado



Figura 3. Motor de arranque seccionado


Una vez que el motor de combustión se ha puesto en marcha y el conductor suelta la llave de encendido, se corta la alimentación eléctrica a la bobina del relé y el muelle de recuperación retira el núcleo cortando la alimentación con electricidad y desacoplando ambos engranes.

En la figura 4 muestra un típico motor de arranque despiezado donde pueden observarse sus partes constituyentes.

Arranque despiezado
Figura 4. Vista de un motor de arranque desarmado


Causas de fallo

Como en todo motor eléctrico de corriente continua para la transmisión de la electricidad es necesaria la presencia de un colector-permutador para el funcionamiento, y con ello el movimiento relativo entre este colector y las escobillas. Este movimiento de rozamiento, con el agravante adicional del chisporroteo por alta corriente y el cambio de delgas en el colector, hace que la vida de las escobillas sea relativamente corta, principal causa de fallo del motor de arranque.

También se desgastan los contactos del relé, los casquillos o cojinetes de rozamiento donde gira el rotor y en menor cuantía que las escobillas, el propio colector. Otra causa de fallo menos frecuente es el fallo del mecanismo d
e rueda libre.

BATERIAS PARA AUTOMOVIL

Constitución y Funcionamiento

El acumulador esta formado principalmente por una caja o cáscara,  que es el recubrimiento de plástico, color negro regularmente, cerrada herméticamente para evitar fugas de liquido de la batería (llamado electrolito) resistente al ácido, a golpes leves, pero también ligera

BORNES
Los bornes o terminales de las baterías regularmente se encuentran situados en la parte superior de la batería. Son postes en forma cónica redondeados, forjados en frío. Existe también otro tipo de baterías con bornes o terminales laterales con rosca hembra (internas).
Los acumuladores con terminales superiores son menos problemáticos, ya que los vapores de la gasificación no se acumulan con facilidad, como en los acumuladores con terminales laterales, donde causan daños y corrosión. Otra desventaja de los acumuladores con terminales laterales consiste en la posibilidad de dañar el alternador y el propio acumulador, cuando los cables se conectan equivocadamente y con ello se invierte la polaridad.
Por otra parte, cada uno de los bornes o terminales corresponde a una polaridad positiva (+) o negativa (-) y se conectan a un circuito externo. Uno de estos bornes, el positivo, es de mayor tamaño o diámetro para evitar que se haga una instalación incorrecta al confundirlo con el borne negativo.
En la parte interior de los bornes, sobre la superficie de la carga, se indican los símbolos en forma moldeada con el fin de identificar la polaridad al realizar la conexión. Una conexión invertida puede ocasionar una avería en el sistema eléctrico.
PLACAS
Contienen el material activo sobre una rejilla plana. Las negativas cargadas contienen plomo esponjoso (Pb), que es de un color gris. Las placas positivas cargadas contienen peróxido de plomo (PbO2), que es de un color marrón obscuro. Una cantidad similar de placas, ya sean negativas o positivas, se conecta a una barra para formar un grupo de placas. Cada grupo de placas va soldado a una brida. El material de la placa es seco y sólido, pero poroso; de esta manera el electrolito no puede penetrar. Las rejillas son conductoras de la corriente generada por los materiales de la placa.
Los grupos de placas están unidos a una lámina de contacto del poste o varillas, en forma vertical y horizontal, y sirven para distribuir uniformemente la corriente.
A la unión de cada uno de estos grupos, es decir a un grupo de placas positivas y otras negativas, interpuestas las unas con las otras, se les llama elemento. Por lo regular las placas negativas son una más que las positivas, por ejemplo, un elemento de 17 placas consta de 8 positivas y 9 negativas. Pero aún falta algo que evite posibles cortos entre las placas positivas y negativas. Esta función la cumplen los separadores, que son láminas delgadas que impiden el contacto entre una y otra placa para que el líquido (electrolito) pueda circular entre ellas. Estos separadores pueden ser fabricados de caucho micro poroso, fibra de vidrio, plástico, madera o cloruro de polivinilo (PVC). En la figura 3 se presenta la vista en planta de un grupo de placas (+ y -), y el ensamble de dos grupos de placas para formar un elemento de batería. Una batería está compuesta aproximadamente por seis de ellas.
ELECTROLITO
Otro de los componentes elementales de la batería es el electrolito, el cual en una solución o mezcla de agua con ácido sulfúrico. El acido sulfúrico es la parte  química activa de la solución que reacciona con los materiales activos de las placas para producir electricidad.
Conviene recordar, antes de conocer el proceso electroquímico, que una batería está formada por tres elementos de dos voltios de tensión cada uno ( 6 voltios de tensión total) o seis elementos con un total de 12 voltios.
Cada elemento comprende dos series de placas (electrodos) Uno de los electrodos es de peróxido de plomo y el otro de plomo esponjoso, como se mencionó. Cuando un elemento está en funcionamiento, el ácido reacciona con las placas y convierte la energía química en energía eléctrica. En el electrodo de peróxido de plomo se produce una carga positiva y en el de plomo esponjoso una carga negativa.
La corriente eléctrica pasa en el circuito de las placas negativas a las positivas y retoma al electrolito. Al persistir la reacción química, en la superficie de ambos electrodos se forma sulfuro de plomo y el ácido sulfúrico se convierte en agua. Cuando las superficies de las dos placas se haya convertido totalmente en sulfatos, la batería se habrá descargado. Si se carga de nuevo, los electrodos volverán a su estado primario y se regenerará el ácido sulfúrico. El proceso que se realiza durante la descarga y la carga del acumulador se muestra a continuación.

MANTENIMIENTO:
La batería del auto debería durar varios años sin problemas. Para conseguir esta vida útil hay que hacer algo de mantenimiento. Comprobamos en nuestros vehículos que observando estas precauciones las baterías Toyo y Yuasa pueden durar más de 4 años.
En baterías con mantenimiento es importante comprobar el nivel del electrolito en cada uno de los seis vasos, debe estar un centímetro por encima de la parte más alta de las placas. En caso contrario será necesario añadir agua destilada hasta alcanzar el nivel correcto. Es muy importante no utilizar agua del grifo porque contiene minerales que interfieren en las reacciones químicas y dañan a las placas.
No es necesario añadir ácido porque no se evapora como el agua, sino que permanece en el interior del vaso. Solamente será necesario añadir ácido si se ha producido un derrame del electrolito de la batería, siempre controlando el proceso con el densímetro para que no se altere su capacidad. La reacción química que se produce en la batería genera energía eléctrica y además es reversible. Alimentando a la batería con una determinada tensión se consigue recombinar los elementos químicos para regenerar la carga de la batería. Todo este proceso de carga y descarga origina un desgaste de las placas internas.
Desgaste que se acelera si el nivel del electrolito desciende por debajo del mínimo, se utiliza la batería con poca carga o se realizan procesos de carga muy rápidos.
El desgaste de las placas crea desprendimiento de material que se deposita en la parte inferior del vaso originando un cortocircuito entre las placas. El cortocircuito entre las placas origina la rápida descarga de la batería que puede suceder en muy pocos minutos.
Para mantener una batería en buen estado es necesario evitar que el nivel del electrolito descienda por debajo del mínimo.
Realizar una carga si presenta síntomas de falta de energía en el momento del arranque del motor.
Una batería pierde un 0.24% de su carga cada día que no se pone en marcha el vehículo.
Evitar las cargas rápidas, no debiendo utilizar intensidades mayores del 10% de la capacidad de la batería. Una batería de 12 voltios y 75 Ah deberá cargase a una intensidad máxima de 7.5 amperios.
Otro punto importante en el mantenimiento de la batería consiste en el estado de los bornes de conexión con la instalación eléctrica. Los vapores de ácido sulfúrico pueden llegar hasta los bornes y terminales creando una capa de sedimentos que atacan al material de los mismos. Para eliminar esta capa de sedimentos se recomienda utilizar solamente agua en abundancia.
Para prevenir estos depósitos de sulfato, aplicar en los bornes y terminales algún tipo de grasa o vaselina. Habrá que tener especial precaución con el agua que cae en el compartimento del motor porque puede depositarse en algún hueco y atacar a la chapa del vehículo.
La unión entre los bornes de la batería y los conectores de la instalación eléctrica del vehículo debe mantenerse lo más limpia posible para evitar que aparezca resistencia entre ellos.
Un pequeño valor de resistencia origina un peor arranque del vehículo y un descenso de la eficacia del sistema de alumbrado y es la causa de importantes fallos en los sistemas electrónicos del vehículo. Las baterías sin mantenimiento no se pueden abrir fácilmente porque el proceso químico no es idéntico al de las baterías con mantenimiento. El agua necesaria para el proceso químico es generada con los elementos químicos de las placas.
Por este motivo los vasos no necesitan agua y la batería no debe ser abierta.
LO BÁSICO:
Arranque
El motor que no prende rápidamente acorta la vida de la batería. Una botella de Chevron Techron puede limpiar los inyectores del motor a gasolina para un prendido rápido. Una botella de AMERICAN Diesel Power Fuel Condicioner en el tanque de diesel evitará el congelamiento del diesel y el taponado del filtro o inyectores.
Agua
Hay que mantener el nivel de agua utilizando solamente agua destilada. Agua potable tiene muchos minerales y sales que forman depósitos que provocan cortes.
Temperatura
Hay que mantener un flujo de aire alrededor de la batería para enfriarla.
Accesorios
Los radios y otros accesorios no deberían estar conectados donde pueden estar prendidos sin que el motor esté funcionando.
Aceite
Un aceite muy viscoso consume la fuerza de la batería en el arranque y reduce la vida útil de la misma.
Vibración
Una batería suelta que puede vibrar y moverse tendrá una vida corta.
Bornes limpios
La sulfatación de los terminales de las baterías presenta resistencia y acortan la vida útil. Hay que limpiarlos con agua o bicarbonato.
Revisión PROACTIVA
Una revisión cada 90 días puede encontrar problemas de carga o descarga que pueden ser arreglados antes de arruinar la batería.

miércoles, 22 de octubre de 2014

FUNCIONAMIENTO DE LOS DIFERENTES SISTEMAS QUE CONFORMAN LA ELECTRICIDAD AUTOMOTRIZ




Se adjunta un link en dónde pueden visualizar el funcionamiento de los sistemas que componen el área de la Electricidad Automotriz

http://www.mindomo.com/mindmap/sample-mind-map-ef00cddd8e7b44a5810fe6defbb3e8ee